
Chapter 14

Hungry Burds: A Simple
Android Game

In This Chapter
▶ Coding an Android game
▶ Using Android animation
▶ Saving data from one run to another

W
hat started as a simple pun involving the author’s last name has
turned into Chapter 14 — the most self-indulgent writing in the his-

tory of technical publishing.

The scene takes place in south Philadelphia in the early part of the 20th
century. My father (then a child) sees his father (my grandfather) handling
an envelope. The envelope has just arrived from the old country. My grand-
mother grabs the envelope out of my grandfather’s hands. The look on her
face is one of superiority. “I open the letters around here,” she says with her
eyes.

While my grandmother opens the letter, my father glances at the envelope.
The last name on the envelope is written in Cyrillic characters, so my father
can’t read it. But he notices a short last name in the envelope’s address.
Whatever the characters are, they’re more likely to be a short name like Burd
than a longer name like Burdinsky or Burdstakovich.

The Russian word for bird is ptitsa, so there’s no etymological connection
between my last name and our avian friends. But as I grew up, I would often
hear kids yell “Burd is the word” or “Hey, Burdman” from across the street.
Today, my one-person Burd Brain Consulting firm takes in a small amount of
change every year.

384 Part IV: Powering Android with Java Code

Introducing the Hungry Burds Game
When the game begins, the screen is blank. Then, for a random amount of
time (averaging one second), a Burd fades into view, as shown in Figure 14-1.

If the user does nothing, the Burd disappears after fading into full view. But if
the user touches the Burd before it disappears, the Burd gets a cheeseburger
and remains onscreen, as shown in Figure 14-2.

Figure 14-1:
A Burd

fades into
view.

Figure 14-2:
You’ve fed
this Burd.

385 Chapter 14: Hungry Burds: A Simple Android Game

After ten Burds have faded in (and the unfed ones have disappeared), the
screen displays a text view, showing the number of fed Burds in the current
run of the game. The text view also shows the high score for all runs of the
game, as shown in Figure 14-3.

 For many apps, timing isn’t vitally important: For them, a consistently slow
response is annoying but not disabling. But for a game like Hungry Burds,
timing makes a big difference. Running Hungry Burds on an emulator feels
more like a waiting game than an action game. To gain a reasonable sense of
how Hungry Burds works, run the app on a real-life device.

The Hungry Burds Java code is about 140 lines long. (Compare this with one
of the Android game developer’s books that I bought. In that book, the sim-
plest example has 2,300 lines of Java code.) To keep the Hungry Burds code
from consuming dozens of pages, I’ve omitted some features that you might
see in a more realistically engineered game.

Figure 14-3:
The game

ends.

386 Part IV: Powering Android with Java Code

 ✓ The Hungry Burds game doesn’t access data over a network.

 The game’s high-score display doesn’t tell you how well you did com-
pared with your friends or with other players around the world. The
high-score display applies to only one device — the one you’re using to
play the game.

 ✓ The game restarts whenever you change the device’s orientation.

 If you tilt the device from Portrait mode to Landscape mode, or from
Landscape mode to Portrait mode, Android calls the main activity’s
lifecycle methods. Android calls the activity’s onPause, onStop, and
onDestroy methods. Then it reconstitutes the activity by calling the
activity’s onCreate, onStart, and onResume methods. As a result,
whatever progress you’ve made in the game disappears and the game
starts itself over again from scratch.

 For an introduction to an activity’s lifecycle methods, see Chapter 5.

 ✓ The game has no Restart button.

 To play the game a second time, you can press Android’s Back button
and then touch the game’s launcher icon. Alternatively, you can tilt the
device from Portrait mode to Landscape mode, or vice versa.

 ✓ The screen measurements that control the game are crude.

 Creating a visual app that involves drawing, custom images, or motion
of any kind involves some math. You need math to make measurements,
estimate distances, detect collisions, and complete other tasks. To do
the math, you produce numbers by making Android API calls, and you
use the results of your calculations in Android API library calls.

 To help me cut quickly to the chase, my Hungry Burds game does only
a minimal amount of math, and it makes only the API calls I believe to
be absolutely necessary. As a result, some items on the screen don’t
always look their best. (This happens particularly when the device is in
Landscape mode.)

 ✓ The game has no settings.

 The number of Burds displayed, the average time of each Burd’s display,
and the minimal length of time for each Burd’s display are all hard-
coded in the game’s Java file. In the code, these constants are NUMBER_
OF_BURDS, AVERAGE_SHOW_TIME, and MINIMUM_SHOW_TIME. As a
developer, you can change the values in the code and reinstall the game.
But the ordinary player can’t change these numbers.

 ✓ The game isn’t challenging with the default NUMBER_OF_BURDS,
AVERAGE_SHOW_TIME, and MINIMUM_SHOW_TIME values.

 I admit it: On this front, I’m at a distinct disadvantage. I’m a lousy game
player. I remember competing in video games against my kids when they
were young. I lost every time. At first it was embarrassing; in the end

387 Chapter 14: Hungry Burds: A Simple Android Game

it was ridiculous. I could never avoid being shot, eaten, or otherwise
squashed by my young opponents’ avatars.

 I don’t presume to know what values of NUMBER_OF_BURDS, AVERAGE_
SHOW_TIME, and MINIMUM_SHOW_TIME are right for you. And if no
values are right for you (and the game isn’t fun to play no matter which
values you have), don’t despair. I’ve created Hungry Burds as a teaching
tool, not as a replacement for Super Mario.

The Project’s Files
The project’s AndroidManifest.xml file is nothing special. The only
element you have to watch for is uses-sdk — in that element, the
android:minSdkVersion attribute has the value 13 or higher. That’s
because the Java code calls the Display class’s getSize method, and that
method isn’t available in Android API levels below 13.

 If you have to get a layout’s measurements in an app that runs in API Level
12 or lower, check the documentation for Android’s ViewTreeObserver.
OnPreDrawListener class.

The project’s activity_main.xml file is almost empty, as shown in
Listing 14-1. I put a TextView somewhere on the screen so that, at the
end of each game, I can display the most recent statistics. I also add an
android:id attribute to the RelativeLayout element. Using that
android:id element, I can refer to the screen’s layout in the Java code.

Listing 14-1: The Main Activity’s Layout File
<RelativeLayout xmlns:android=
 “http://schemas.android.com/apk/res/android”
 xmlns:tools=”http://schemas.android.com/tools”
 android:id=”@+id/relativeLayout”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:paddingBottom=
 “@dimen/activity_vertical_margin”
 android:paddingLeft=
 “@dimen/activity_horizontal_margin”
 android:paddingRight=
 “@dimen/activity_horizontal_margin”
 android:paddingTop=
 “@dimen/activity_vertical_margin”
 tools:context=”.MainActivity” >

 <TextView

(continued)

388 Part IV: Powering Android with Java Code

Listing 14-1 (continued)
 android:id=”@+id/textView1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignParentLeft=”true”
 android:layout_alignParentTop=”true”
 android:layout_marginLeft=”42dp”
 android:layout_marginTop=”34dp”
 android:text=”@string/nothing”
 android:textAppearance=
 “?android:attr/textAppearanceLarge” />

</RelativeLayout>

In the res directory of my Hungry Burds project, I have ten .png files — two
files for each of Android’s generalized screen densities, as shown in Figure 14-4.

 For a look at Android screen densities, see Chapter 8.

Each burd.png file is a picture of me. Each burd_burger.png file is a
picture of me with a cheeseburger. When Android runs the game, Android
checks the device’s specs and decides, on the spot, which of the five screen
densities to use. (You don’t need an if statement like the one in Chapter 8.)

Figure 14-4:
Images in

the proj-
ect’s res
 directory.

389 Chapter 14: Hungry Burds: A Simple Android Game

The Main Activity
The Hungry Burds game has only one activity: the app’s main activity. So you
can digest the game’s Java code in its entirety in one big gulp. To make this
gulp palatable, I start with an outline of the activity’s code. The outline is in
Listing 14-2. (If outlines don’t work for you, and you want to see the code in
its entirety, refer to Listing 14-3.)

Listing 14-2: An Outline of the App’s Java Code
package com.allmycode.hungryburds;

public class MainActivity extends Activity
 implements OnClickListener, AnimationListener {

 // Declare fields

 /* Activity methods */

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Find layout elements

 // Get the size of the device’s screen

 // Set up SharedPreferences to record high scores
 }

 @Override
 public void onResume() {
 showABurd();
 }

 /* Game methods */

 void showABurd() {
 // Add a Burd in some random place
 // At first, the Burd is invisible

 // Create an AlphaAnimation to make the Burd
 // fade in (from invisible to fully visible).
 burd.startAnimation(animation);
 }

 private void showScores() {
 // Get high score from SharedPreferences

(continued)

390 Part IV: Powering Android with Java Code

Listing 14-2 (continued)
 // Display high score and this run’s score
 }

 /* OnClickListener method */

 public void onClick(View view) {
 countClicked++;
 // Change the image to a Burd with a cheeseburger
 }

 /* AnimationListener methods */

 public void onAnimationEnd(Animation animation) {
 if (++countShown < NUMBER_OF_BURDS) {
 showABurd(); // Again!
 } else {
 showScores();
 }
 }

}

The heart of the Hungry Burds code is the code’s game loop, as shown in the
following example:

public void onResume() {
 showABurd();
}

void showABurd() {
 // Add a Burd in some random place.
 // At first, the Burd is invisible ...

 burd.setVisibility(View.INVISIBLE);

 // ... but the animation will make the
 // Burd visible.

 AlphaAnimation animation =
 new AlphaAnimation(0.0F, 1.0F);
 animation.setDuration(duration);
 animation.setAnimationListener(this);
 burd.startAnimation(animation);
}

public void onAnimationEnd(Animation animation) {
 if (++countShown < NUMBER_OF_BURDS) {
 showABurd(); // Again!

391 Chapter 14: Hungry Burds: A Simple Android Game

 } else {
 showScores();
 }
}

When Android executes the onResume method, the code calls the showA-
Burd method. The showABurd method does what its name suggests, by
animating an image from alpha level 0 to alpha level 1. (Alpha level 0 is fully
transparent; alpha level 1 is fully opaque.)

 In the onCreate method, you put code that runs when the activity comes
into existence. In contrast, in the onResume method, you put code that runs
when the user begins interacting with the activity. The user isn’t aware of the
difference because the app starts running so quickly. But for you, the devel-
oper, the distinction between an app’s coming into existence and starting to
interact is important. In Listings 14-2 and 14-3, the onCreate method contains
code to set the layout of the activity, assign variable names to screen widgets,
measure the screen size, and prepare for storing high scores. The onResume
method is different. With the onResume method, the user is about to touch
the device’s screen. So in Listings 14-2 and 14-3, the onResume method dis-
plays something for the user to touch: the first of several hungry Burds.

When the animation ends, the onAnimationEnd method checks the number
of Burds that have already been displayed. If the number is less than ten,
the onAnimationEnd method calls showABurd again, and the game loop
continues.

By default, a Burd returns to being invisible when the animation ends. But
the main activity implements OnClickListener, and when the user touches
a Burd, the class’s onClick method makes the Burd permanently visible, as
shown in the following snippet:

public void onClick(View view) {
 countClicked++;
 ((ImageView) view).setImageResource
 (R.drawable.burd_burger);
 view.setVisibility(View.VISIBLE);
}

The code, all the code, and
nothing but the code
Following the basic outline of the game’s code in the previous section,
Listing 14-3 contains the entire text of the game’s MainActivity.java file.

392 Part IV: Powering Android with Java Code

Listing 14-3: The App’s Java Code
package com.allmycode.hungryburds;

import java.util.Random;

import android.app.Activity;
import android.content.SharedPreferences;
import android.graphics.Point;
import android.os.Bundle;
import android.view.Display;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.view.animation.AlphaAnimation;
import android.view.animation.Animation;
import android.view.animation.Animation.AnimationListener;
import android.widget.ImageView;
import android.widget.RelativeLayout;
import android.widget.RelativeLayout.LayoutParams;
import android.widget.TextView;

public class MainActivity extends Activity
 implements OnClickListener, AnimationListener {

 final int NUMBER_OF_BURDS = 10;
 final long AVERAGE_SHOW_TIME = 1000L;
 final long MINIMUM_SHOW_TIME = 500L;
 TextView textView;
 int countShown = 0, countClicked = 0;
 Random random = new Random();

 RelativeLayout relativeLayout;
 int displayWidth, displayHeight;

 SharedPreferences prefs;
 SharedPreferences.Editor editor;

 /* Activity methods */

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 textView = (TextView) findViewById(R.id.textView1);
 relativeLayout = (RelativeLayout)
 findViewById(R.id.relativeLayout);

 Display display =
 getWindowManager().getDefaultDisplay();
 Point size = new Point();

393 Chapter 14: Hungry Burds: A Simple Android Game

 display.getSize(size);
 displayWidth = size.x;
 displayHeight = size.y;

 prefs = getPreferences(MODE_PRIVATE);
 editor = prefs.edit();
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

 @Override
 public void onResume() {
 super.onResume();
 countClicked = countShown = 0;
 textView.setText(R.string.nothing);
 showABurd();
 }

 /* Game methods */

 void showABurd() {
 long duration =
 random.nextInt((int) AVERAGE_SHOW_TIME)
 + MINIMUM_SHOW_TIME;

 LayoutParams params = new LayoutParams
 (LayoutParams.WRAP_CONTENT,
 LayoutParams.WRAP_CONTENT);

 params.leftMargin =
 random.nextInt(displayWidth) * 7 / 8;
 params.topMargin =
 random.nextInt(displayHeight) * 4 / 5;

 ImageView burd = new ImageView(this);
 burd.setOnClickListener(this);
 burd.setLayoutParams(params);
 burd.setImageResource(R.drawable.burd);
 burd.setVisibility(View.INVISIBLE);

 relativeLayout.addView(burd);

 AlphaAnimation animation =
 new AlphaAnimation(0.0F, 1.0F);
 animation.setDuration(duration);
 animation.setAnimationListener(this);
 burd.startAnimation(animation);

(continued)

394 Part IV: Powering Android with Java Code

Listing 14-3 (continued)
 }

 private void showScores() {
 int highScore = prefs.getInt(“highScore”, 0);

 if (countClicked > highScore) {
 highScore = countClicked;
 editor.putInt(“highScore”, highScore);
 editor.commit();
 }

 textView.setText(“Your score: “ + countClicked +
 “\nHigh score: “ + highScore);
 }

 /* OnClickListener method */

 public void onClick(View view) {
 countClicked++;
 ((ImageView) view).setImageResource
 (R.drawable.burd_burger);
 view.setVisibility(View.VISIBLE);
 }

 /* AnimationListener methods */

 public void onAnimationEnd(Animation animation) {
 if (++countShown < NUMBER_OF_BURDS) {
 showABurd();
 } else {
 showScores();
 }
 }

 public void onAnimationRepeat(Animation arg0) {
 }

 public void onAnimationStart(Animation arg0) {
 }
}

Random
A typical game involves random choices. (You don’t want Burds to appear in
the same places every time you play the game.) Truly random values are dif-
ficult to generate. But an instance of Java’s Random class creates what appear
to be random values (pseudorandom values) in ways that the programmer
can help determine.

395 Chapter 14: Hungry Burds: A Simple Android Game

For example, a Random object’s nextDouble method returns a double
value between 0.0 and 1.0 (with 0.0 being possible but 1.0 being impossible).
The Hungry Burds code uses a Random object’s nextInt method. A call to
 nextInt(10) returns an int value from 0 to 9.

If displayWidth is 720 (which stands for 720 pixels), the call to random.
nextInt(displayWidth) in Listing 14-3 returns a value from 0 to 719.
And because AVERAGE_SHOW_TIME is the long value 1000L, the expression
random.nextInt((int) AVERAGE_SHOW_TIME) stands for a value from 0
to 999. (The casting to int helps fulfill the promise that the nextInt meth-
od’s parameter is an int, not a long value.) By adding back MINIMUM_SHOW_
TIME (refer to Listing 14-3), I make duration be a number between 500 and
1499. A Burd takes between 500 and 1499 milliseconds to fade into view.

Measuring the display
Android’s Display object stores information about a device’s display. How
complicated can that be? You can measure the screen size with a ruler, and you
can determine a device’s resolution by reading the specs in the user manual.

Of course, Android programs don’t have opposable thumbs, so they can’t
use plastic rulers. And a layout’s characteristics can change depending on
several runtime factors, including the device’s orientation (portrait or land-
scape) and the amount of screen space reserved for Android’s notification
bar and buttons. If you don’t play your cards right, you can easily call meth-
ods that prematurely report a display’s width and height as zero values.

Fortunately, the getSize method in Android API level 13 and higher gives
you some correct answers in an activity’s onCreate method. So, here and
there in Listing 14-3, you find the following code:

public class MainActivity extends Activity {

 int displayWidth, displayHeight;

 public void onCreate(Bundle savedInstanceState) {

 Display display =
 getWindowManager().getDefaultDisplay();
 Point size = new Point();
 display.getSize(size);
 displayWidth = size.x;
 displayHeight = size.y;

 }

 void showABurd() {

396 Part IV: Powering Android with Java Code

 LayoutParams params;
 params = new LayoutParams(LayoutParams.WRAP_CONTENT,
 LayoutParams.WRAP_CONTENT);
 params.leftMargin =
 random.nextInt(displayWidth) * 7 / 8;
 params.topMargin =
 random.nextInt(displayHeight) * 4 / 5;

 }

An instance of Android’s Point class is basically an object with two compo-
nents: an x component and a y component. In the Hungry Burds code, a call
to getWindowManager().getDefaultDisplay() retrieves the device’s
display. The resulting display’s getSize method takes an instance of the
Point class and fills its x and y fields. The x field’s value is the display’s
width, and the y field’s value is the display’s height, as shown in Figure 14-5.

A LayoutParams object stores information about the way a widget
should appear as part of an activity’s layout. (Each kind of layout has its
own LayoutParams inner class, and the code in Listing 14-3 imports the
RelativeLayout.LayoutParams inner class.) A LayoutParams instance
has a life of its own, apart from any widget whose appearance the instance
describes. In Listing 14-3, I construct a new LayoutParams instance before
applying the instance to any particular widget. Later in the code, I call

burd.setLayoutParams(params);

to apply the new LayoutParams instance to one of the Burds.

Constructing a new LayoutParams instance with a double dose of
LayoutParams.WRAP_CONTENT (one LayoutParams.WRAP_CONTENT for
width and one LayoutParams.WRAP_CONTENT for height) indicates that a
widget should shrink-wrap itself around whatever content is drawn inside it.
Because the code eventually applies this LayoutParams instance to a Burd,
the Burd will be only wide enough and only tall enough to contain a picture
of yours truly from one of the project’s res/drawable directories.

 The alternative to WRAP_CONTENT is MATCH_PARENT. With two MATCH_
PARENT parameters in the LayoutParams constructor, a Burd’s width and
height would expand to fill the activity’s entire relative layout.

A LayoutParams instance’s leftMargin field stores the number of pixels
between the left edge of the display and the left edge of the widget. Similarly,
a LayoutParams instance’s topMargin field stores the number of pixels
between the top edge of the display and the top edge of the widget. (Refer to
Figure 14-5.)

397 Chapter 14: Hungry Burds: A Simple Android Game

Figure 14-5:
Measuring

distances
on the

screen.

In Listing 14-3, I use random values to position a new Burd. A Burd’s left edge
is no farther than 7⁄8 ths of the way across the screen, and the Burd’s top edge
is no lower than 4⁄5 ths of the way down the screen. If you don’t multiply the
screen’s width by 7⁄8 (or some such fraction), an entire Burd can be positioned
beyond the right edge of the screen. The user sees nothing while the Burd
comes and goes. The same kind of thing can happen if you don’t multiply the
screen’s height by 4⁄5.

 The fractions 7⁄8 and 4⁄5, which I use to determine each widget’s position, are
crude guesstimates of a portrait screen’s requirements. A more refined app
would carefully measure the available turf and calculate the optimally sized
region for positioning new Burds.

Constructing a Burd
Android’s ImageView class represents objects that contain images.
Normally, you put an image file (a .png file, a .jpg file, or a .gif file) in one
of your project’s res/drawable directories, and a call to the ImageView

398 Part IV: Powering Android with Java Code

object’s setImageResource method associates the ImageView object with
the image file. In Listing 14-3, the following lines fulfill this role:

ImageView burd = new ImageView(this);

burd.setImageResource(R.drawable.burd);

Because of the R.drawable.burd parameter, Android looks in the project’s
res/drawable directories for files named burd.png, burd.jpg, or burd.
gif. (Refer to Figure 14-4.) Android selects the file whose resolution best
suits the device and displays that file’s image on the ImageView object.

The statement

burd.setVisibility(View.INVISIBLE);

makes the Burd be completely transparent. The next statement

relativeLayout.addView(burd);

normally makes a widget appear on the user’s screen. But with the View.
INVISIBLE property, the Burd doesn’t show up. It’s not until I start the
code’s fade-in animation that the user begins seeing a Burd on the screen.

 Android has two kinds of animation: view animation and property anima-
tion. The Hungry Burds code uses view animation. An object’s visibility
property doesn’t change when a view animation makes the object fade in or
fade out. In this chapter’s example, a Burd starts off with View.INVISIBLE.
A fade-in animation makes the Burd appear slowly on the screen. But when
the animation finishes, the Burd’s visibility field still contains the original
View.INVISIBLE value. So normally, when the animation ends, the Burd
simply disappears.

When the user clicks on a Burd, Android calls the onClick method in
Listing 14-3. The onClick method’s view parameter represents the
ImageView object that the user clicked. In the body of the onClick method,
the statement

((ImageView) view).setImageResource
 (R.drawable.burd_burger);

assures Java that view is indeed an ImageView instance and changes the
picture on the face of that instance from a hungry author to a well-fed author.
The onClick method also sets the ImageView instance’s visibility to View.
VISIBLE. That way, when this Burd’s animation ends, the happy Burd
remains visible on the user’s screen.

399 Chapter 14: Hungry Burds: A Simple Android Game

Android animation
Android has two types of animation:

 ✓ View animation: An older system in which you animate with either
tweening or frame-by-frame animation, as described in this list:

	 •	Tweening: You tell Android how an object should look initially and
how the object should look eventually. You also tell Android how
to change from the initial appearance to the eventual appearance.
(Is the change gradual or sudden? If the object moves, does it
move in a straight line or in a curve of some sort? Will it bounce a
bit when it reaches the end of its path?)

 With tweening, Android considers all your requirements and fig-
ures out exactly how the object looks between the start and the
finish of the object’s animation.

	 •	Frame-by-frame animation: You provide several snapshots of the
object along its path. Android displays these snapshots in rapid
succession, one after another, giving the appearance of movement
or of another change in the object’s appearance.

 Movie cartoons are the classic example of frame-by-frame anima-
tion even though, in modern moviemaking, graphics specialists use
tweening to create sequences of frames.

 ✓ Property animation: A newer system (introduced in Android 3.0, API
Level 11) in which you can modify any property of an object over a
period of time.

 With property animation, you can change anything about any kind of
object, whether the object appears on the device’s screen or not. For
example, you can increase an earth object’s average temperature from
15° Celsius to 18° Celsius over a period of ten minutes. Rather than
display the earth object, you can watch the way average temperature
affects water levels and plant life, for example.

 Unlike view animation, the use of property animation changes the value
stored in an object’s field. For example, you can use property animation
to change a widget from being invisible to being visible. When the prop-
erty animation finishes, the widget remains visible.

The Hungry Burds code uses view animation, which includes these special-
ized animation classes:

 ✓ AlphaAnimation: Fades into view or fades out of view

 ✓ RotateAnimation: Turns around

400 Part IV: Powering Android with Java Code

 ✓ ScaleAnimation: Changes size

 ✓ TranslateAnimation: Moves from one place to another

In particular, the Hungry Burds code uses AlphaAnimation.

The statement

AlphaAnimation animation =
 new AlphaAnimation(0.0F, 1.0F);

creates a fade-in/fade-out animation. An alpha level of 0.0 indicates complete
transparence, and an alpha level of 1.0 indicates complete opaqueness. (The
AlphaAnimation constructor expects its parameters to be float values, so I
plug the float values 0.0F and 1.0F into the constructor call.)

The call

animation.setAnimationListener(this);

tells Java that the code to respond to the animation’s progress is in this
main activity class. Indeed, the class header at the top of Listing 14-3 informs
Java that the HungryBurds class implements the AnimationListener
interface. And to make good on the implementation promise, Listing 14-3 con-
tains bodies for the methods onAnimationEnd, onAnimationRepeat, and
onAnimationStart. (Nothing happens in the onAnimationRepeat and
onAnimationStart methods. That’s okay.)

The onAnimationEnd method does what I describe earlier in this chapter:
The method checks the number of Burds that have already been displayed. If
the number is less than ten, the onAnimationEnd method calls showABurd
again, and the game loop continues.

Shared preferences
When a user finishes a game of Hungry Burds, the app displays the score for
the current game and the high score for all games. (Refer to Figure 14-3.) The
high score display applies to only one device — the device that’s running the
current game. To remember the high score from one run to another, I use
Android’s shared preferences feature.

 Android provides several ways to store information from one run of an app to
the next. In addition to using shared preferences, you can store information in
the device’s SQLite database. (Every Android device has SQLite database soft-
ware.) You can also store information in an ordinary Linux file or on a network
host of some kind.

401 Chapter 14: Hungry Burds: A Simple Android Game

Here’s how you wield a set of shared preferences:

 ✓ To create shared preferences, you call the activity’s getShared
Preferences method.

 In fact, the getSharedPreferences method belongs to Android’s
Context class, and the Activity class is a subclass of the Context
class.

 In Listing 14-3, I call getSharedPreferences in the activity’s on
Create method. The call’s parameter, MODE_PRIVATE, tells Android
that no other app can read from or write to this app’s shared prefer-
ences. (I know — there’s nothing “shared” about something that no
other app can use. But that’s the way Android’s terminology works.)

 Aside from MODE_PRIVATE, the alternatives are described in this list:

	 •	MODE_WORLD_READABLE: Other apps can read from these
 preferences.

	 •	MODE_WORLD_WRITEABLE: Other apps can write to these
 preferences.

	 •	MODE_MULTI_PROCESS: Other apps can write to these prefer-
ences even while an app is in the middle of a read operation. Weird
things can happen with this much concurrency. If you use MODE_
MULTI_PROCESS, watch out!

 You can combine modes with Java’s bitwise or operator (|). A call such as
getSharedPreferences(
 MODE_WORLD_READABLE | MODE_WORLD_WRITEABLE);

 makes your preferences both readable and writable for all other pro-
cesses.

 ✓ To start adding values to a set of shared preferences, you use an
instance of the SharedPreferences.Editor class.

 In Listing 14-3, the onCreate method makes a new editor object. Then,
in the showScores method, I use the editor to add (“highScore”,
highScore) to the shared preferences. Taken together, (“high
Score”, highScore) is a key/value pair. The value (whatever number
my highscore variable holds) is the actual information. The key (the
string “highScore”) identifies that particular piece of information.
(Every value has to have a key. Otherwise, if you’ve stored several differ-
ent values in your app’s shared preferences, you have no way to retrieve
any particular value.)

 In Listing 14-3, I call putInt to store an int value in shared preferences.
Android’s Editor class (an inner class of the SharedPreferences
class) has methods such as putInt, putFloat, putString, and put
StringSet.

402 Part IV: Powering Android with Java Code

 ✓ To finish adding values to a set of shared preferences, you call the edi-
tor’s commit method.

 In the showScores method in Listing 14-3, the statement editor.
commit() does the job.

 ✓ To read values from an existing set of shared preferences, you call
getBoolean, getInt, getFloat, or one of the other get methods
belonging to the SharedPreferences class.

 In the showScores method in Listing 14-3, the call to getInt takes
two parameters. The first parameter (the string “highscore”) is the
key that identifies a particular piece of information. The second param-
eter (the int value 0) is a default value. So when you call prefs.
getInt(“highScore”, 0), the following applies:

	 •	If	prefs has no pair with key “highscore”, the method call
returns 0.

	 •	If	prefs has a previously stored “highscore” value, the method
returns that value.

It’s Been Fun
This chapter has been fun, and this book has been fun! I love writing about
Android and Java. And I love hearing from readers. Remember that you can
send e-mail to me at java4android @allmycode.com, and you can reach
me on Twitter (@allmycode) and on Facebook (/allmycode).

Occasionally, I hear from a reader who says something like this: “If I read
your whole book, will I know everything I have to know about Java?” The
answer is always “No, no, no!” (That’s not only one “no.” It’s “no” times
three.) No matter what topic you study, there’s always more to learn. So keep
reading, keep practicing, keep learning, and, by all means, keep in touch.

